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cw-2-butene over fra/u-2-butene and syn selectivity in trisubstituted 
olefins in terms of barriers to rotation of the methyl groups. The 
lower the calculated barrier to rotation, the higher the reactivity. 
For example, they showed that the cis methyl group of 2-butene, 
which has a lower rotational barrier than the trans, is more reactive 
than the trans olefin. The geminal methyl groups of 2-methyl-
propene, which have a higher barrier to rotation, are rather 
deactivated. Similar trends hold with 2-methyl-2-butene. These 
useful arguments, which are valid for methylated di- and tri­
substituted ethylenes, are insufficient to rationalize the present 
results. For example, the neopentyl group is expected to have an 
appreciably higher barrier to rotation than the methyl groups in 
olefins 11 and 12, yet it is more reactive. We suggest that non-
bonded interactions in the isomeric transition states are far better 
indicators of product distributions than barriers to rotation. 

Further work to clarify the various types of regioselectivity on 
tri- and tetrasubstituted alkenes is in progress.17 
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The propensity of a triple bond to participate in a [2 + 2] 
cycloaddition with an enol ether is greatly facilitated if the triple 
bond is appended to a chromium or tungsten carbene complex2 

such as in complexes 1 or 2.3'4 Further investigations of reactions 
in this class led to the discovery of ene reactions mediated by a 
transition metal carbene complex and is the subject of this com­
munication. Additionally, an unusual effect of silicon on the 
distribution between ene and [2 + 2] cycloaddition products and 
on the stereospecificity of the [2 + 2] cycloadditions was found 
which has not yet been observed in organic systems. 
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Table I. Ene versus [2 + 2] Cycloaddition Reactions of Carbene 
Complexes" 
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"All reactions were carried out in neat enol ether (10-20 equiv) at 
25 0C under argon for the indicated time. All products were purified 
on silica gel. 4A single double-bond isomer was obtained in each case 
which is assumed to be that resulting from syn addition since this was 
shown to be the case for 19a by NOE experiments (see supplementary 
material). 'Compounds 10b and Hb could not be separated by silica 
gel chromatogrpahy. 

The first ene reaction of a transition metal carbene complex 
was encountered in the reaction of the chromium carbene complex 
la with methyl isopropenyl ether. The ene product 3a slowly 
cyclizes to the pyranylidene complex 5a5 upon hydrolysis on silica 
gel but can be isolated if eluted rapidly. The nature of the sub-
stituent R in the reaction of 1 was found to be crucial to the 
outcome; the trimethylsilyl complex la gave only the ene product 
3a whereas the methyl complex lb led only to the [2 + 2] cy-
cloadduct 4b. The Lewis acid mediated reactions of acetylenic 
esters and alkenes are known to give mixtures of ene and [2 + 
2] cycloadducts where the ratio of products has been shown to 
have a strong dependence on the olefin substitution pattern and 
on the conformations of the starting materials.6,7 However, this 
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effect of silicon has not been reported for the Lewis acid mediated 
ene reactions of olefins with either /3-silyl-substituted acetylenic 
esters (such as 6b) or 0-silyl-substituted alkenyl esters. 
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Three trends of significance can be seen from the data presented 
in Table I. First, the reactions of alkynyl carbene complexes with 
silyl enol ethers give mainly ene products while alkyl enol ethers 
give predominately [2 + 2] cycloadducts. Second, it was found 
that six-membered-ring enol ethers give a greater proportion of 
ene products than their five-membered-ring analogues, and this 
has also been observed in reactions of esters.7' Third, the effect 
of a /3-silyl substituent was not an isolated phenomenon; in each 
case in Table I the silyl-substituted carbene complexes give a 
greater proportion of ene product than do the corresponding alkyl 
complexes. Furthermore, the effect of silicon on these reactions 
can be judged to be electronic since the steric bulk of R does not 
affect the product partition between 13 and 14. This suggests 
that either (a) silicon stabilizes an intermediate of the type 21 
for a period of time sufficient to allow for conformation changes 
required for proton transfer or (b) silicon destabilizes intermediate 
21 relative to a concerted ene reaction. 
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This issue was probed with the reactions of complexes 2a and 
2b with the cis and trans isomers of ethyl propenyl ether. In these 
reactions, ene products are not possible, but the question of whether 
silicon stabilizes or destabilizes the zwitterionic intermediate 21 
could be approached in a study of the stereospecificity of the [2 
+ 2] cycloadditions, an issue that has not been previously exam­
ined.3 The reactions of both the silyl- and methyl-substituted 
complexes 2a and 2b were stereospecific with m-propenyl ethyl 
ether giving the m-cyclobutene complex 22 and its ring-opened 
dienyl complex 23. The reaction of frans-propenyl ethyl ether 
with the methyl complex 2b gave only the dienyl complex 25b. 
The only reaction where there was crossover in the stereochemistry 
was that of the trimethylsilyl complex 2a with f/wts-propenyl ethyl 
ether, where only the os-cyclobutenyl complex 22a was observed.8 

This is the first piece of evidence indicating that the [2 + 2] 
cycloaddition of alkynyl carbene complexes with enol ethers occurs 
by a stepwise mechanism. Taken together, the above results 
suggest that the role that silicon plays in affecting the partition 
between ene and [2 + 2] cycloaddition product is also played in 
stabilizing zwitterionic intermediates of the type 21. Silicon is 
known to stabilize cationic centers in a variety of situations;*-11 

however, it is not clear how silicon stabilizes 21, and this issue 
and the scope of the ene reactions of carbene complexes are 
currently being investigated. 
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Nucleophilic addition to the central carbon of the rr-allyl ligand 
has been observed in reactions of a limited class of transition-metal 
7r-allyl complexes, leading to the formation of metallacyclobutane 
complexes.1 Originally reported for the addition of hard nu-
cleophiles to [(C5H5)2M(jj3-allyl)]+PF6- (M = Mo, W),1" this 
regioselectivity is in marked contrast to the terminal carbon ad­
dition generally observed in such reactions.2 Two theoretical 
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